
SPNR: Generalizable Sparse-Point Neural Rendering

Xuyi Meng1,2 Jialin Zhang1,3 Fanbo Xiang1 Jiayuan Gu1 Xiaoshuai Zhang 1

Hao Su1†

1UC San Diego 2Nanyang Technological University 3Tsinghua University

Abstract

Recent advancements on neural volume rendering meth-
ods like NeRF [32] have demonstrated impressive ability to
produce photo-realistic rendering for complex scenes. In
this work, we present SPNR, which encodes sparse point
clouds into neural volume representations to produce im-
ages with high visual quality. Given sparsely sampled sur-
face points, SPNR generates disentangled density and color
volumes and utilizes volumetric rendering to produce view-
consistent high-quality images. The training is supervised
with adversarial training objectives and the learned model
can generalize to point clouds of unseen shapes. Exper-
imentally, we demonstrate that SPNR outperforms previ-
ous point-cloud-based neural rendering methods in terms
of rendering quality on two datasets (ABO and ShapeNet),
and it generalizes to point clouds of objects unseen during
training.

1. Introduction
Recent advancements on neural volume rendering meth-

ods like NeRF [32] have demonstrated impressive ability to
produce photo-realistic rendering for complex scenes. In
this work, we present SPNR, which encodes sparse point
clouds into neural volume representations to produce im-
ages with high visual quality. Given sparsely sampled sur-
face points, SPNR generates disentangled density and color
volumes and utilizes volumetric rendering to produce view-
consistent high-quality images. The training is supervised
with adversarial training objectives and the learned model
can generalize to point clouds of unseen shapes. Exper-
imentally, we demonstrate that SPNR outperforms previ-
ous point-cloud-based neural rendering methods in terms
of rendering quality on two datasets (ABO and ShapeNet),
and it generalizes to point clouds of objects unseen during
training.

3D point clouds are adopted in a wide range of applica-
tions. Most 3D capture devices, such as LiDARs and depth
cameras, capture objects as point clouds. Lagrangian phys-
ical simulation methods also use point clouds to represent

Figure 1. SPNR renders sparse input point clouds with material
features to high-quality images with detailed geometry and high-
frequency textures through neural radiance fields.

the physical states, and they have been used to simulate
many types of materials, including cloth [29], fluid [2], and
granular material [46]. For both capturing and simulation,
point clouds need to be visualized in their downstream ap-
plications. However, rendering point clouds to high-quality
images is non-trivial, especially when the points are sparse,
which is commonly encountered in real applications. For
example, 3D sensors such as iPad LiDAR scanner and In-
tel RealSense cannot capture accurate depths for glossy or
translucent surfaces, resulting in missing points in the cap-
tured results; many physical simulators run on a tight com-
putation budget, and choose to trade point cloud fidelity
for speed. Therefore, a method to render high-quality im-
ages from sparse point clouds is a crucial component in 3D
capturing and simulation, and it will further enhance down-
stream applications, including autonomous driving, virtual
reality, robotics, and gaming industries.

Existing approaches of point cloud rendering typically
fall into 3 categories: splatting, meshing, and volumetric
rendering. Point splatting methods render 3D points as el-
liptical [49,61] patches or ellipsoids [55]. To mitigate holes
and elliptical artifacts resulted from the sparsity of points,

[40] proposes to perform point cloud super-resolution be-
fore splatting. Meshing-based methods, including marching
cubes, Poisson surface reconstruction, and recent learning-
based methods [47, 50] seek to convert point clouds to
meshes, which is the most commonly used representation in
renderers. Inspired by recent advancements in neural volu-
metric rendering pioneered by NeRF [32], [60] proposes to
convert point clouds to neural volumetric representation and
use ray marching to render images. However, none of these
works is capable of rendering sparse point clouds with both
detailed geometries and textures.

In this work, SPNR, we aim to address the challenge of
producing images with high visual quality from sparse in-
put point clouds in a generalizable way. First, we take
inspiration from Neural Volumes [28] and MVSNeRF [8],
which use 3D CNNs to process volumetric information,
store it in 3D feature volumes, and render photo-realistic
images. Note that MVSNeRF is a generalizable neural ra-
diance estimation framework, and we would like to build
our framework by adapting the MVSNeRF architecture and
inherit its generalizable learning ability. Since point clouds
also naturally reside in 3D space, we similarly encode the
input point cloud into 3D feature volumes, process with 3D
CNNs, and render with ray marching. Next, we discover
that separately encoding geometry and appearance informa-
tion from the point cloud into two feature volumes leads
to much better rendering quality and generalizability. Fi-
nally, we identify that, similar to image super-resolution,
rendering sparse point clouds to high-quality images is in-
trinsically ambiguous, and requires hallucinating additional
geometry and appearance details beyond the input point po-
sitions and colors. To this end, we introduce an adversarial
training objective, to encourage our neural renderer to syn-
thesize perceptually reasonable details. To ensure the ren-
dered results are properly conditioned on the input, we de-
vise a method to convert sparse point clouds to 2D images,
which are conditional inputs to the image-based discrimina-
tor.

To summarize, our main contributions are as follows:

• We propose a novel point-cloud-based neural render-
ing framework, which consumes sparse (1024) point
clouds and can generalize to unseen objects;

• We show that disentanglement in encoding geometry
and appearance information can significantly improve
visual quality and generalizability;

• We introduce a conditional adversarial training objec-
tive to encourage synthesizing perceptually reasonable
and high-frequency details despite sparse inputs.

2. Related Work

Neural Rendering. Recent advancements in neural scene
representations have enabled high-quality image synthe-
sis through differentiable rendering. Implicit surface-based
methods represent 3D geometry as signed distance fields
(SDFs) and render with ray marching [35], sphere trac-
ing [27, 43], or by converting SDFs to meshes [24, 42].
Mesh-based methods render meshes through differentiable
rasterizers [20] or path tracers [14, 23]. Point-based meth-
ods represent scenes as 3D point clouds and render with
splatting methods [1, 19, 21, 53]. Very recently, volumetric
representations, such as neural radiance field (NeRF) [32]
and Neural Volumes (NV) [28], represent scenes with vol-
umetric density and appearance, and can be rendered via
differentiable ray marching. NeRF and its many exten-
sions [3, 8, 15, 30, 33, 36, 37, 39, 44, 48, 51, 52, 54, 56, 58]
have demonstrated that neural volumetric representations
can achieve high-quality novel-view synthesis, relighting,
appearance editing, and also efficient differentiable render-
ing from input RGB images. While most of these methods
follow the original NeRF set-up to encode all scene infor-
mation in a single MLP, [8, 26, 58] divide scenes into dis-
crete voxels with local features; such feature-conditioned
neural representations provide the opportunity to learn gen-
eralizable rendering networks across scenes. Our work
(SPNR) follows a similar methodology. We encode input
point clouds into 3D feature volumes for density and color,
and utilize these features for subsequent volume render-
ing. Such architecture allows our framework to render point
clouds of objects unseen during training.

3D-aware Generative Image Synthesis. Generative ad-
versarial networks [12] are now capable of synthesizing
photo-realistic 2D images [4, 17, 18]. More recently, 3D-
aware image synthesis has gained popularity thanks to the
advancements in 3D representations and differentiable ren-
dering, since it requires generating multi-view consistent
images. The previous methods can mainly be divided into
two kinds. Mesh-based methods [11, 25, 45] directly syn-
thesize textured 3D meshes. Voxel-based generative mod-
els [10, 13, 59] synthesize objects represented by 3D voxel
grids with 3D CNNs. However, due to high memory cost,
the resolution for the voxel grids is typically limited. To ad-
dress this issue, recent works [6,34,41] introduced a NeRF-
like volumetric rendering module to improve the quality of
image synthesized from a low-resolution 3D feature vol-
ume. Our method (SPNR) adopts a similar design in 3D
feature volumes, but a key difference is that our work syn-
thesizes images conditioned on input sparse point clouds,
and we focus on designing better feature conditions from
such point cloud inputs.

3. SPNR
3.1. Overview

In this work, we present a point-cloud-based neural ren-
derer, SPNR, which consumes a sparse point cloud along
with material information (e.g., color, roughness, metal-
lic values) and renders a 2D image conditioned on the
input point cloud. Formally, given a sparse point cloud
P = {pi|i = 1 . . . N} ∈ RN×3 and its point-wise material
information M = {mi|i = 1 . . . N} ∈ RN×CM , the neural
renderer R needs to render a 2D image I = R(P,M,Φ),
where Φ is the camera parameter.

Our neural renderer is based on neural radiance fields
and volumetric rendering due to their superior performance
on novel view synthesis. However, different from prior
works on neural radiance fields (e.g., NeRF [32]) that re-
quire per-scene optimization, we aim at a generalizable
neural renderer that encodes the input, which is a sparse
point cloud in our case, to neural radiance fields, even if the
input is unseen during training. Such generalizability leads
to a plug-and-play neural renderer, while demands learning
generalizable representations instead of memorizing a spe-
cific scene by neural networks.

Besides, different from classical rendering, where in-
puts are either densely sampled points or continuous rep-
resentations (e.g., mesh), our neural renderer takes sparse
point clouds as inputs, which only contain low-frequency
information, and needs to synthesize high-frequency de-
tails. Fig 3 illustrates the ambiguity due to the sparsity.
Two visually different objects may correspond to similar
sparse point cloud representations. Thus, previous training
objectives (e.g., L1/L2 loss), which only match each ren-
dered image with the corresponding ground truth, can be
sub-optimal and hurt generalizability.

Fig 2 illustrates the overall pipeline of our SPNR. First,
we encode the input point cloud to two disentangled neu-
ral feature volumes for geometry and appearance, followed
by two separate MLPs to decode neural radiance fields.
Then, differentiable ray-marching is applied to neural ra-
diance fields to render the 2D image. During training, we
introduce a conditional adversarial objective, to encourage
the model to synthesize high-frequency details conditioned
on sparse inputs. We will elaborate on the pipeline in the
following sections.

3.2. Points to Neural Feature Volumes

To achieve strong generalizability, we use neural feature
volumes as intermediate representations to encode neural
radiance fields, inspired by MVSNeRF [8]. Concretely, we
first voxelize the input sparse point cloud and construct an
input feature volume V ∈ RD×D×D×C , where D is the
spatial resolution and C is the feature dimension. For each
voxel, we use a PointNet [38] to encode all the points within

this voxel and their material properties:

V (i) = PointNet({p̂j ,mj |voxelize(pj) = i}) (1)

where i is the voxel index, and p̂j is a local coordinate of
pj in the voxel. Note that representing coordinates in local
frames is critical to learn generalizable representations.

The information is scattered over sparse locations in the
input feature volume. Thus, we use a 3D convolutional U-
Net, which contains several downsampling and upsamping
convolutions as well as skip connections, to generate the
dense neural feature volume: S = U-Net(V). The encoder-
decoder structure of U-Net can effectively propagate sparse
information contained in the input feature volume. And it
can also encode both local and global geometry and appear-
ance information in a hierarchical way, which helps synthe-
size details.

Moreover, we observe that it is critical to separately en-
code geometry and appearance, to improve generalizability.
Otherwise, neural networks might memorize the correlation
between geometry and appearance, instead of conditioning
the output on the input, especially its material information.
Thus, we propose to use two branches to separately encode
geometry and appearance. Concretely, we first use a Point-
Net to encode input positions to a geometry feature volume
Vgeo(i).

Vgeo(i) = PointNetgeo({p̂j |voxelize(pj) = i}) (2)

We use another PointNet to encode both positions and ma-
terial properties to an appearance feature volume Vapp(i).

Vapp(i) = PointNetapp({p̂j ,mj |voxelize(pj) = i}) (3)

Then, two 3D U-Nets are employed to generate two neural
feature volumes Sgeo and Sapp seperately:

Sgeo = U-Netgeo(Vgeo); Sapp = U-Netapp(Vapp) (4)

In Sec 5.4, we show that our design to disentangle geometry
and appearance enables our neural renderer to generate im-
ages conditioning on inputs better. Such disentanglement
in encoding geometry and appearance is also shown to be
helpful in prior works on 3D-aware generative models like
GET3D [11].

3.3. Neural Feature Volume Rendering

The neural feature volume rendering stage of our
pipeline refers to the process of rendering the RGB image
IRGB from the geometry feature volume Sgeo, appearance
feature volume Sapp, and camera parameter Φ. First, we
apply the volumetric rendering technique to render a low-
resolution RGB image I−RGB along with a feature map I−F .
Then, following EG3D [6], we employ a super-resolution
module to upsample and refine I−RGB with the help of I−F ,
to obtain a high-resolution RGB image IRGB . The super-
resolution module is introduced to improve the overall effi-
ciency during both training and inference.

Volumetric
Rendering

StyleG
A

N
2

D
iscrim

inator

Super
R

esolution

Point C
loud

𝜎

𝑉𝑔𝑒𝑜

𝑉𝑎𝑝𝑝PointNet

𝒎 𝑐, 𝑐′

𝒑

PointNet 3D 𝑈-𝑁𝑒𝑡𝑔𝑒𝑜 𝑆𝑔𝑒𝑜

𝑆𝑎𝑝𝑝
MLP

MLP Neural Renderer Low-Resolution Feature map
(RGB & Feature)

Render Visible Points

Renderer C
ond.

No Gradient No Gradient

Rendered Image

= Camera Parameters

𝑑

𝑥𝑖

𝑥𝑖

3D 𝑈-𝑁𝑒𝑡𝑎𝑝𝑝

𝑥, 𝑑, 𝑓𝑎𝑝𝑝

𝑥, 𝑓𝑔𝑒𝑜

C
ond.

Upscale

Figure 2. Overall pipeline. We present a point cloud rendering pipeline that first encodes the input point cloud to disentangled geometry
and appearance feature volumes, and then renders RGB images with volumetric rendering and super-resolution. Given input points {pi}
and associated point material features {mi}, they are separately encoded to feature volumes Vgeo and Vapp through per-cell PointNets.
Vgeo and Vapp are then processed with 3D U-Nets to neural feature volumes Sgeo and Sapp. Next, we apply differentiable ray-marching to
generate 2D low-resolution RGB images and feature maps. For each shading point on a camera ray, an appearance MLP takes the spatial
position x, viewing direction d and trilinearly interpolated features of Sapp to produce radiance c and appearance feature c′. An geometry
MLP takes the position and trilinearly interpolated features of Sgeo to generate a volumetric density. c and c′ are then aggregated by density
along the ray to generate per-pixel colors and features, which are then passed through a super-resolution CNN to generate the final image.
Our pipeline is trained with a StyleGAN2 discriminator that additionally conditions on the input point cloud by taking the 2D projection
of the visible part of the point cloud.

Figure 3. The ambiguity caused by sparsity. The original meshes
are shown in the top row and the sampled point cloud are cor-
respondingly shown in the bottom. Meshes of different shapes
may be sampled into similar point clouds. And for those similarly
shaped meshes, there may be loss of texture details when sampled.

Volumetric Rendering Given the geometry feature vol-
ume Sgeo and appearance feature volume Sapp, for a spa-
tial point x and viewing direction d, we regress the volu-
metric density σ, radiance c and an additional appearance-
related feature vector c′ with 2 MLPs, namely MLPgeo and
MLPapp:

σ = MLPgeo(x, fgeo), fgeo = Sgeo(x) (5)
c, c′ = MLPapp(x, d, fapp), fapp = Sapp(x) (6)

where fgeo = Sgeo(x), and fapp = Sapp(x) are the neural
features trilinearly interpolated at position x for the feature
volumes Sgeo and Sapp respectively.

Now σ, c form a density field and a view-dependent radi-
ance field, which allow us to use the classical ray-marching
algorithm [31] to compute the pixel color by accumulating
radiance values along sampled shading points long the cam-
era ray.

ct =
∑
i

Ti(1− exp(−σiδi))ci (7)

Ti = exp−
i−1∑
j=1

σjδj (8)

This process is the same as in NeRF [32], where ct is the
target output pixel color. Ti is known as volumetric trans-
mittance at point i along the camera ray. δi represents the
distance between consecutive shading points. ci and σi

are the radiance and density values at point i from evalu-
ating Ggeo and Gapp with point position and ray direction.
Our pipeline additionally accumulates appearance feature c′

along the ray, which provides additional information for the
super-resolution step.

c′t =
∑
i

Ti(1− exp(−σiδi))c
′
i (9)

Super Resolution We follow EG3D [6] to use a 2D
CNN to upsample and refine the low-resolution RGB im-
age generated by the differentiable ray marching process.
We also adopt dual discrimination, where the concatena-

tion of the bilinearly upsampled low-resolution RGB im-
age Upsample(I−RGB) and the super-resolved image IRGB

is fed into a discriminator for adversarial training. We
refer readers to [6] for more details. In short, dual dis-
crimination encourages the consistency between the neural
rendering and the super-resolved image, and avoids view-
inconsistency artifacts. We extend dual discrimination to
condition on the input sparse point cloud, which is de-
scribed in the next section.

3.4. Conditional Adversarial Training

As discussed in image super-resolution [22], minimiz-
ing the pixel-wise reconstruction error can result in lack of
high-frequency details and poor perceptual quality despite
high signal-to-noise ratios. We have observed the similar
phenomenon as our input point cloud is sparse and stands
for low-frequency signals sampled from the original. Thus,
in addition to the reconstruction loss (e.g., L1 loss), we in-
troduce an adversarial objective to encourage SPNR to syn-
thesize perceptually reasonable details given sparse inputs.
Let D denote the discriminator. Our adversarial objective is
as follows:

Ladv = d(D(R(P,M,Φ)|P,M)) + d(−D(Igt|P,M)) (10)

where d(x) = − log(1 + exp(−x)). Note that a key dif-
ference from prior works is that our discriminator needs to
be conditioned on the input point cloud and its material in-
formation (P,M). Otherwise, the generator (renderer) can
ignore input information like colors if the adversarial objec-
tive is unconditioned. Our generator is already conditioned
on the input point cloud by design.

However, it is unclear how to effectively design an
image-based discriminator conditioned on point clouds. In
this work, we propose to project the sparse point cloud to
a condition image Icond. Concretely, we transform the 3D
sparse point cloud to the camera frame according to camera
parameters, filter out invisible points according to ground-
truth depth, and project visible points to the 2D image.

Thus, we manage to extend dual discrimination [6] to
be conditioned on our sparse inputs. The concatenation of
Icond, Upsample(I−RGB) and IRGB is fed to the discrimina-
tor. The final adversarial objective is as follows:

Ladv =d(D(R(P,M,Φ),Upsample(I−RGB)|Icond))

+ d(−D(Igt,Upsample(I−gt)|Icond))
(11)

4. Implementation Details
Network Architectures The input point cloud is normal-
ized to a unit cube before voxelization and feature ex-
traction. The resolution of input feature volumes is 643.
The PointNet [38], which is used to extract voxel features
from points, consists of a 3-layer MLP with (64, 128, 256)

hidden units and a max-pooling layer to aggregate point-
wise features. The dimensions of input feature volumes
are both 32. The architecture of 3D U-Nets, which are
used to output geometry and color feature volumes, is the
same as that in MVSNeRF [8], with 5 downsampling and
upsampling stages. The dimensions of output neural fea-
ture volumes are both 16. The neural radiance field de-
coders MLPgeo and MLPapp both consist of 7 layers with
(32,32,32,32,32,32,64) hidden units, and output 1-dim den-
sity and 32-dim radiance feature.

Volumeric Rendering Our volumetric rendering follows
the two-pass importance sampling strategy as in NeRF [32],
resulting in 64 equally spaced shading points per ray for the
first pass and 64 importance-sampled points per ray for the
second pass. Different from NeRF, which only generates a
3-channel radiance value, our renderer produces 29 features
in addition to 3-channel radiance to serve as auxiliary inputs
to the super-resolution module. Unless otherwise stated, the
output resolution is 64× 64.

Super Resolution We adopt the same architecture for our
super-resolution module as EG3D [6], except that style
modulation is not included. Our super-resolution module
is trained to upsample the low-resolution rendered result to
the target resolution, which is 128x128 for ABO [9] and
200x200 1 for ShapeNet [7].

Discriminator We modified the discriminator of Style-
GAN2 [18] for conditional adversarial training described
in Sec 3.4. There are three conditions in our task. First,
to prevent degenerate shape solutions as mentioned in [6],
we condition the discriminator on camera parameters. This
condition injection follows the implementation in [16].
Secondly, to ensure RGB images generated by the super-
resolution module do not inpaint view-inconsistent contents
in 2D space, we condition the discriminator on the low-
resolution image output via volumetric rendering. Thirdly,
since the rendering process is conditional in nature, the dis-
criminator should also be conditioned on the input point
cloud, which is represented by a condition image illustrated
in Sec 3.4.

Training Details To supervise SPNR, we use the L1 loss
L1, the proposed conditional adversarial objective Ladv ,
and R1 regularization ∥∇D(I)∥22. The total loss is L =
100L1+Ladv+0.1∥∇D(I)∥22. The optimizer is Adam, and
the learning rates are 0.002 for discriminator and 0.0025 for
generator (renderer). We use a batch size of 8 for all exper-
iments. The model is trained on 4 RTX 2080-Ti GPUs.

1We first bilinearly upscale the 64× 64 rendered result to 100× 100,
and then apply our super-resolution module.

Input PC Condition PC Ref Ours PointNeRF PoissonNPBG

Input PC Condition PC Ref Ours PointNeRF PoissonNPBG Points2NeRF

Figure 4. Qualitative comparison of our SPNR with Point-NeRF, NPBG, classical Poisson surface reconstruction, and Points2NeRF, given
point cloud input shown in 1st column (only material RGB is shown). The 3rd column shows the refernece image labeled “real” for our
GAN loss and used as the target image for other losses. The 2nd column shows the condition image for our conditional discriminator.
Points2NeRF fails to converge on the ABO dataset and we only show the ShapetNet airplane result produced from their pretrained model.

5. Experiments

5.1. Dataset

We evaluate SPNR on two datasets: Amazon Berkeley
Objects (ABO) [9] and ShapeNet [7]. For each object in a
dataset, we sample 1024 points uniformly from the mesh,
with material properties including base color, roughness
and metallic value. 10 RGB images with white backgrounds
are rendered from different viewpoints for training and eval-
uation. For our SPNR, we also generate corresponding con-
dition images as described in Sec 3.4. We use the Blender
Cycles renderer and a fixed environment map as lighting.

The ABO dataset contains 7953 products with artist-
designed 3D meshes. It covers 63 classes and features great
diversity of geometry and appearance. To enhance the di-
versity of base colors, we augment each ABO object with 5
variants by transforming its base colors. For each variant,
we apply a single random rotation in the RGB space to all
base colors. The target resolution is 128× 128.

For the ShapeNet dataset, we showcase the airplane cate-
gory. The target resolution is 200×200 following [60]. Re-
sults on other categories (car and chair) are presented in Ap-
pendix. We do not apply color augmentation for ShapeNet.

5.2. Metrics and Evaluation Protocol

We split the datasets into training and test sets. For ABO,
there are 16161 training objects (including variants) and 200
test objects (without color augmentation). For ShapeNet
plane, there are 3627 training objects and 406 test objects.

We report PSNR and LPIPS [57] on the test split of
each dataset. In addition to these metrics measuring whole-
image quality, we introduce Conditional PSNR, which
measures how well the rendered image respects the mate-
rial properties associated with the input point cloud. It is
computed as the average PSNR score over the pixels corre-
sponding to visible input points.

5.3. Comparison with Baselines

We first compare SPNR quantitatively with 2 baseline
methods, Neural Point-Based Graphics (NPBG) [1] and
Point-NeRF [52], shown in Table 2. For another baseline
method, Points2NeRF [60], it fails to converge on the ABO
dataset, and we are not able to reproduce the quality re-
ported in their papers due to its weeks-long training time on
ShapeNet.

NPBG [1] associates neural descriptors with the point
cloud, which needs to be optimized given multiple images
of a scene. It rasterizes the input point cloud and associ-
ated descriptors to multiple 2D feature images, which are
fed into a 2D U-Net to output the final result. The original
implementation is not suitable for generalization. Thus, we
adapt NPBG by replacing descriptors with material proper-
ties. As shown in Fig 4, it either fails to fill in holes due
to the sparsity of rasterized images, or can only generate
blurry edges. Such limitation is also discussed by the origi-
nal NPGB paper.

Point-NeRF [52] uses a 3D volumetric rendering
pipeline and includes a cross-scene training and per-scene
finetuning. We modify their feed-forward network in the
cross-scene training stage to fit our setting. During the ray
marching process, Point-NeRF aggregates features of near-
est input points for each shading point. While this design
may perform well for the original setting with dense point
clouds, it is not suitable for processing sparse point clouds
even with increased neighbor-search radius. As shown in
Figure 4, the generated images tend to be blurry noisy.

In addition, we show qualitative comparison with 2 other
baselines, mesh rendering with Poisson surface reconstruc-
tion with vertex color, and Points2NeRF [60]. As shown
in Figure 4, Poisson surface reconstruction fails to produce
a reasonable surface on sparse point clouds. This demon-
strates that our problem is highly non-trivial for classical al-
gorithms, and a quantitative measure only may not provide
much insight. The setting of Points2NeRF is very close to
ours. It uses a hypernetwork that takes a sparse point cloud
as input and outputs the parameters of a NeRF. However,
we are not able to compare with it quantitatively as its train-

(a) (b) (c)

Figure 5. Comparison of reference (a), our 2-branch design (b) and
single-branch design (c). The information leak between geometry
and appearances hinders the learning of both geometric structures
and object colors.

ing fails to converge on the ABO dataset, and takes too long
on ShapeNet. Their pretrained model seems to use a non-
standard coordinate system that we could not align with our
settings. For qualitative comparison, we use their pretrained
model and manually choose views that roughly align with
ours.

5.4. Ablation Studies

To justify our design choices, we conduct comprehensive
ablation studies on the ABO dataset.

First, we show the effectiveness of GAN loss by replac-
ing it with L1 loss. As shown in Figure 6, the pipeline is
unable to produce fine structures with L1 supervision only.
We speculate that such details are key clues for the discrim-
inator to identify generated images from real ones, while
they do not greatly affect the L1 loss.

Next, we justify our geometry/appearance 2-branch de-
sign by comparing it to a single-branch pipeline, which uses
a single 3D U-Net to produce a 3D volume containing both
volumetric density and appearance-related features. For the
single-branch pipeline, we double the number of channels
in some layers of the 3D U-Net and the MLPs, giving it
roughly the same learnable parameters as the 2-branch ver-
sion. As shown in Table 4 and Figure 5, the 2-branch ver-
sion produces qualitatively and quantitatively better results
than the single-branch one.

5.5. Additional Experiments & Applications

Rendering real-world objects. We demonstrate that
SPNR trained on the ABO dataset can transfer directly to
render point clouds of real-world objects. To this end,
we use objects from the YCB dataset [5], a collection of

ABO Car Airplane Chair

Method PSNR↑ LPIPS↓ cPSNR↑ PSNR LPIPS cPSNR PSNR LPIPS cPSNR PSNR LPIPS cPSNR

NPBG [1] 16.7 0.173 13.3 16.3 0.157 8.51 25.6 0.0639 13.8 19.2 0.133 13
Point-NeRF [52] 20.5 0.214 15.2 16.6 0.181 9.33 25.6 0.0879 14.5 18.2 0.193 9.34

Points2NeRF∗ [60] 20.86 20.45 17.17
Ours 22.3 0.110 17.0 19.89 0.078 25.4 0.0442 14.4 18.0 0.105 11.2

Table 1. Quantitative comparison. ∗PSNR values are copied from Points2NeRF paper.

ABO Airplane

Method PSNR↑ LPIPS↓ cPSNR↑ PSNR↑ LPIPS↓ cPSNR↑
NPBG [1] 16.7 0.173 13.3 25.6 0.0639 13.8

Point-NeRF [52] 20.5 0.214 15.2 25.6 0.0879 14.5
Points2NeRF∗ [60] - - - 20.45 - -

Ours 22.3 0.110 17.0 25.4 0.0442 14.4

Table 2. Quantitative comparison. ∗PSNR values are copied from the number Points2NeRF paper, due to its failure to converge on the
ABO dataset and weeks-long training on ShapeNet.

Method PSNR↑ LPIPS↓
L1 only 18.38 0.143

GAN w/o condition 16.54 0.157
GAN w/o L1 21.16 0.153

Full (L1 + GAN w/ condition) 22.26 0.110

Table 3. Ablation studies of losses of our SPNR on ABO [9].

L1 Only Uncond. GAN Cond. GAN
w/o L1

Cond. GAN
w/ L1

Ref

Figure 6. Qualitative comparison for ablation study on loss design.

Method PSNR↑ LPIPS↓
1-branch 15.62 0.188
2-branch 22.26 0.110

Table 4. Ablation studies for network architecture.

scanned real objects, and uniformly sample 1024 points on
their reconstructed surfaces. The results are shown in Fig-
ure 7.

Material editing. The conditional design of our pipeline
allows changing object appearance by editing the input

Figure 7. Generalizable point cloud rendering for real-world YCB
objects.

Figure 8. Material editing for real-world YCB objects.

point cloud color. We demonstrate it in Figure 8. Our dis-
entangled 2-branch framework guarantees that modifying
point material features does not change the geometry. And
our data augmentation strategy helps the model to adapt
to various input material colors, even to unseen geometry-

material combinations.

6. Conclusion
In this work, we propose a novel generalizable point-

cloud-based neural rendering pipeline SPNR, which takes
sparse point clouds as input and renders high-quality im-
ages via volumetric rendering. Different from prior works
on neural point-based rendering, SPNR can generalize to
unseen point clouds without fine-tuning. We show that
disentanglement in encoding geometry and appearance can
considerably enhance visual quality and generalizability.
The proposed conditional adversarial training objective can
effectively encourage the neural renderer to synthesize
high-frequency and perceptually reasonable details despite
sparse inputs.

However, the rendering quality of SPNR still has room
to improve. It is currently limited by the resolution of the
dense voxel representation. Improving the efficiency of
SPNR is our future work.

References
[1] Kara-Ali Aliev, Artem Sevastopolsky, Maria Kolos, Dmitry

Ulyanov, and Victor Lempitsky. Neural point-based graph-
ics. June 2019. 2, 7, 8

[2] Jan Bender and Dan Koschier. Divergence-free smoothed
particle hydrodynamics, 2015. 1

[3] Mark Boss, Raphael Braun, Varun Jampani, Jonathan T.
Barron, Ce Liu, and Hendrik P.A. Lensch. NeRD: Neu-
ral reflectance decomposition from image collections. In
2021 IEEE/CVF International Conference on Computer Vi-
sion (ICCV). IEEE, oct 2021. 2

[4] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large
scale GAN training for high fidelity natural image synthe-
sis. In International Conference on Learning Representa-
tions, 2019. 2

[5] Berk Calli, Arjun Singh, Aaron Walsman, Siddhartha Srini-
vasa, Pieter Abbeel, and Aaron M. Dollar. The ycb object
and model set: Towards common benchmarks for manipula-
tion research, 2015. 7

[6] Eric R. Chan, Connor Z. Lin, Matthew A. Chan, Koki
Nagano, Boxiao Pan, Shalini De Mello, Orazio Gallo,
Leonidas Guibas, Jonathan Tremblay, Sameh Khamis, Tero
Karras, and Gordon Wetzstein. Efficient geometry-aware 3D
generative adversarial networks. In arXiv, 2021. 2, 3, 4, 5

[7] Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat
Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese, Mano-
lis Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi,
and Fisher Yu. ShapeNet: An Information-Rich 3D Model
Repository. Technical Report arXiv:1512.03012 [cs.GR],
Stanford University — Princeton University — Toyota Tech-
nological Institute at Chicago, 2015. 5, 6

[8] Anpei Chen, Zexiang Xu, Fuqiang Zhao, Xiaoshuai Zhang,
Fanbo Xiang, Jingyi Yu, and Hao Su. MVSNeRF: Fast
generalizable radiance field reconstruction from multi-view

stereo. In 2021 IEEE/CVF International Conference on
Computer Vision (ICCV). IEEE, oct 2021. 2, 3, 5

[9] Jasmine Collins, Shubham Goel, Kenan Deng, Achlesh-
war Luthra, Leon Xu, Erhan Gundogdu, Xi Zhang,
Tomas F Yago Vicente, Thomas Dideriksen, Himanshu
Arora, Matthieu Guillaumin, and Jitendra Malik. Abo:
Dataset and benchmarks for real-world 3d object understand-
ing. CVPR, 2022. 5, 6, 8

[10] Matheus Gadelha, Subhransu Maji, and Rui Wang. 3d shape
induction from 2d views of multiple objects. Dec. 2016. 2

[11] Jun Gao, Tianchang Shen, Zian Wang, Wenzheng Chen,
Kangxue Yin, Daiqing Li, Or Litany, Zan Gojcic, and Sanja
Fidler. Get3d: A generative model of high quality 3d tex-
tured shapes learned from images. Sept. 2022. 2, 3

[12] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial networks. Commu-
nications of the ACM, 63(11):139–144, 2020. 2

[13] Philipp Henzler, Niloy Mitra, and Tobias Ritschel. Escap-
ing plato’s cave: 3d shape from adversarial rendering. Nov.
2018. 2

[14] Wenzel Jakob, Sébastien Speierer, Nicolas Roussel, and De-
lio Vicini. Dr.jit: A just-in-time compiler for differentiable
rendering. Transactions on Graphics (Proceedings of SIG-
GRAPH), 41(4), July 2022. 2

[15] Kacper Kania, Kwang Moo Yi, Marek Kowalski, Tomasz
Trzciniski, and Andrea Tagliasacchi. CoNeRF: Controllable
neural radiance fields. In 2022 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR). IEEE,
jun 2022. 2

[16] Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine,
Jaakko Lehtinen, and Timo Aila. Training generative ad-
versarial networks with limited data. Advances in Neural
Information Processing Systems, 33:12104–12114, 2020. 5

[17] Tero Karras, Samuli Laine, and Timo Aila. A style-based
generator architecture for generative adversarial networks.
In Proceedings of the IEEE/CVF conference on computer vi-
sion and pattern recognition, pages 4401–4410, 2019. 2

[18] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten,
Jaakko Lehtinen, and Timo Aila. Analyzing and improving
the image quality of StyleGAN. In Proc. CVPR, 2020. 2, 5

[19] Georgios Kopanas, Julien Philip, Thomas LeimkÃ¼hler, and
George Drettakis. Point-based neural rendering with per-
view optimization. Computer Graphics Forum, 40(4):29–43,
July 2021. 2

[20] Samuli Laine, Janne Hellsten, Tero Karras, Yeongho Seol,
Jaakko Lehtinen, and Timo Aila. Modular primitives for
high-performance differentiable rendering. ACM Transac-
tions on Graphics, 39(6), 2020. 2

[21] Christoph Lassner and Michael Zollhofer. Pulsar: Efficient
sphere-based neural rendering. In 2021 IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR).
IEEE, jun 2021. 2

[22] Christian Ledig, Lucas Theis, Ferenc Huszar, Jose Caballero,
Andrew Cunningham, Alejandro Acosta, Andrew Aitken,
Alykhan Tejani, Johannes Totz, Zehan Wang, and Wenzhe
Shi. Photo-realistic single image super-resolution using a
generative adversarial network. Sept. 2016. 5

[23] Tzu-Mao Li, Miika Aittala, Frédo Durand, and Jaakko Lehti-
nen. Differentiable monte carlo ray tracing through edge
sampling. page 1–11, 12 2018. 2

[24] Yiyi Liao, Simon Donne, and Andreas Geiger. Deep march-
ing cubes: Learning explicit surface representations. In
IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR). IEEE Computer Society, 2018. 2

[25] Yiyi Liao, Katja Schwarz, Lars Mescheder, and Andreas
Geiger. Towards unsupervised learning of generative models
for 3d controllable image synthesis. Dec. 2019. 2

[26] Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and
Christian Theobalt. Neural sparse voxel fields, 2021. 2

[27] Shaohui Liu, Yinda Zhang, Songyou Peng, Boxin Shi, Marc
Pollefeys, and Zhaopeng Cui. Dist: Rendering deep implicit
signed distance function with differentiable sphere tracing.
Nov. 2019. 2

[28] Stephen Lombardi, Tomas Simon, Jason Saragih, Gabriel
Schwartz, Andreas Lehrmann, and Yaser Sheikh. Neural vol-
umes. 38:1–14, 2019. 2

[29] Miles Macklin, Matthias Müller, and Nuttapong Chentanez.
Xpbd: position-based simulation of compliant constrained
dynamics, 2016. 1

[30] Ricardo Martin-Brualla, Noha Radwan, Mehdi S. M. Sajjadi,
Jonathan T. Barron, Alexey Dosovitskiy, and Daniel Duck-
worth. NeRF in the wild: Neural radiance fields for uncon-
strained photo collections. In 2021 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR). IEEE,
jun 2021. 2

[31] Nelson Max. Optical models for direct volume rendering.
IEEE Transactions on Visualization and Computer Graphics,
1(2):99–108, 1995. 4

[32] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. NeRF:
Representing scenes as neural radiance fields for view syn-
thesis. In Computer Vision – ECCV 2020, pages 405–421.
Springer International Publishing, 2020. 1, 2, 3, 4, 5

[33] Thomas Müller, Alex Evans, Christoph Schied, and Alexan-
der Keller. Instant neural graphics primitives with a multires-
olution hash encoding. ACM Trans. Graph., 41(4):102:1–
102:15, July 2022. 2

[34] Michael Niemeyer and Andreas Geiger. Giraffe: Represent-
ing scenes as compositional generative neural feature fields.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 11453–11464, 2021.
2

[35] Michael Niemeyer, Lars Mescheder, Michael Oechsle, and
Andreas Geiger. Differentiable volumetric rendering: Learn-
ing implicit 3d representations without 3d supervision. Dec.
2019. 2

[36] Keunhong Park, Utkarsh Sinha, Jonathan T. Barron, Sofien
Bouaziz, Dan B Goldman, Steven M. Seitz, and Ricardo
Martin-Brualla. Nerfies: Deformable neural radiance fields.
In 2021 IEEE/CVF International Conference on Computer
Vision (ICCV). IEEE, oct 2021. 2

[37] Keunhong Park, Utkarsh Sinha, Peter Hedman, Jonathan T.
Barron, Sofien Bouaziz, Dan B Goldman, Ricardo Martin-
Brualla, and Steven M. Seitz. Hypernerf: A higher-

dimensional representation for topologically varying neural
radiance fields. June 2021. 2

[38] Charles R. Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas.
Pointnet: Deep learning on point sets for 3d classification
and segmentation. Dec. 2016. 3, 5

[39] Christian Reiser, Songyou Peng, Yiyi Liao, and Andreas
Geiger. KiloNeRF: Speeding up neural radiance fields with
thousands of tiny MLPs. In 2021 IEEE/CVF International
Conference on Computer Vision (ICCV). IEEE, oct 2021. 2

[40] Riccardo Roveri, A. Cengiz Öztireli, Ioana Pandele, and
Markus Gross. Pointpronets: Consolidation of point clouds
with convolutional neural networks. 37:87–99, 2018. 2

[41] Katja Schwarz, Yiyi Liao, Michael Niemeyer, and Andreas
Geiger. Graf: Generative radiance fields for 3d-aware image
synthesis, 2021. 2

[42] Tianchang Shen, Jun Gao, Kangxue Yin, Ming-Yu Liu, and
Sanja Fidler. Deep marching tetrahedra: a hybrid represen-
tation for high-resolution 3d shape synthesis. In Advances in
Neural Information Processing Systems (NeurIPS), 2021. 2

[43] Vincent Sitzmann, Michael Zollhöfer, and Gordon Wet-
zstein. Scene representation networks: Continuous 3d-
structure-aware neural scene representations. June 2019. 2

[44] Pratul P. Srinivasan, Boyang Deng, Xiuming Zhang,
Matthew Tancik, Ben Mildenhall, and Jonathan T. Barron.
NeRV: Neural reflectance and visibility fields for relighting
and view synthesis. In 2021 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR). IEEE, jun
2021. 2

[45] Attila Szabó, Givi Meishvili, and Paolo Favaro. Unsuper-
vised generative 3d shape learning from natural images. Oct.
2019. 2

[46] Andre Pradhana Tampubolon, Theodore Gast, Gergely Klár,
Chuyuan Fu, Joseph Teran, Chenfanfu Jiang, and Ken
Museth. Multi-species simulation of porous sand and wa-
ter mixtures. 36:1–11, 2017. 1

[47] Nanyang Wang, Yinda Zhang, Zhuwen Li, Yanwei Fu, Wei
Liu, and Yu-Gang Jiang. Pixel2mesh: Generating 3d mesh
models from single RGB images. In Computer Vision –
ECCV 2018, pages 55–71. Springer International Publishing,
2018. 2

[48] Peng Wang, Lingjie Liu, Yuan Liu, Christian Theobalt, Taku
Komura, and Wenping Wang. Neus: Learning neural implicit
surfaces by volume rendering for multi-view reconstruction,
2021. 2

[49] Yifan Wang, Felice Serena, Shihao Wu, Cengiz Öztireli, and
Olga Sorkine-Hornung. Differentiable surface splatting for
point-based geometry processing. 38:1–14, 2019. 1

[50] Chao Wen, Yinda Zhang, Chenjie Cao, Zhuwen Li, Xi-
angyang Xue, and Yanwei Fu. Pixel2mesh++: 3d mesh gen-
eration and refinement from multi-view images. Apr. 2022.
2

[51] Fanbo Xiang, Zexiang Xu, Milos Hasan, Yannick Hold-
Geoffroy, Kalyan Sunkavalli, and Hao Su. NeuTex: Neu-
ral texture mapping for volumetric neural rendering. In
2021 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR). IEEE, jun 2021. 2

[52] Qiangeng Xu, Zexiang Xu, Julien Philip, Sai Bi, Zhixin
Shu, Kalyan Sunkavalli, and Ulrich Neumann. Point-NeRF:
Point-based neural radiance fields. In 2022 IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR). IEEE, jun 2022. 2, 7, 8

[53] Wang Yifan, Felice Serena, Shihao Wu, Cengiz Öztireli, and
Olga Sorkine-Hornung. Differentiable surface splatting for
point-based geometry processing. page 1–14, 11 2019. 2

[54] Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa.
pixelNeRF: Neural radiance fields from one or few images.
In 2021 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR). IEEE, jun 2021. 2

[55] Jihun Yu and Greg Turk. Reconstructing surfaces of particle-
based fluids using anisotropic kernels. 32:1–12, 2013. 1

[56] Kai Zhang, Gernot Riegler, Noah Snavely, and Vladlen
Koltun. Nerf++: Analyzing and improving neural radiance
fields, 2020. 2

[57] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman,
and Oliver Wang. The unreasonable effectiveness of deep
features as a perceptual metric. In CVPR, 2018. 7

[58] Xiaoshuai Zhang, Sai Bi, Kalyan Sunkavalli, Hao Su, and
Zexiang Xu. Nerfusion: Fusing radiance fields for large-
scale scene reconstruction. Mar. 2022. 2

[59] Jun-Yan Zhu, Zhoutong Zhang, Chengkai Zhang, Jiajun Wu,
Antonio Torralba, Joshua B. Tenenbaum, and William T.
Freeman. Visual object networks: Image generation with
disentangled 3d representation. Dec. 2018. 2

[60] D. Zimny, T. Trzciński, and P. Spurek. Points2nerf: Gener-
ating neural radiance fields from 3d point cloud. June 2022.
2, 6, 7, 8

[61] Matthias Zwicker, Hanspeter Pfister, Jeroen van Baar, and
Markus Gross. Surface splatting, 2001. 1

	. Introduction
	. Related Work
	. SPNR
	. Overview
	. Points to Neural Feature Volumes
	. Neural Feature Volume Rendering
	. Conditional Adversarial Training

	. Implementation Details
	. Experiments
	. Dataset
	. Metrics and Evaluation Protocol
	. Comparison with Baselines
	. Ablation Studies
	. Additional Experiments & Applications

	. Conclusion

