
Supplementary Mateirals
SPNR: Generalizable Sparse-Point Neural Rendering

Xuyi Meng1,2 Jialin Zhang1,3 Fanbo Xiang1 Jiayuan Gu1 Xiaoshuai Zhang 1

Hao Su1†

1UC San Diego 2Nanyang Technological University 3Tsinghua University

In the supplementary, we provide further experiment de-
tails on architecture, training, datasets and baseline imple-
mentations. We will also present addtional quantitative and
qualitative results on all datasets.

A. Additional Experiment Details
1. Implementations

Architecture We use a multilayer perceptron (MLP) to
implement the PointNet, which contains 3 hidden layers
with (64, 128, 256) units. Each hidden layer is followed
by a batch normalization and a ReLU activation.

The 3D U-Net in our work is deeper than that in MVS-
NeRF [3]. In each stage of the encoder, the spatial resolu-
tion is reduced by half, and the feature dimension is dou-
bled. The final resolution of the feature volume in the en-
coder is 1/32 of the input one. The skip connections in the
decoder are implemented as addition.

We use stratified sampling similar to NeRF [6] during
the rendering process. The first stage is coarse sampling,
where 64 points are sampled along each ray uniformly. The
second fine sampling stage re-samples 64 points along each
ray. In this stage, more points are sampled near the points
with larger density in the coarse stage. The points sampled
from both stages are combined as the final shading points.

The super-resolution module is slightly different for each
dataset. The output resolution of our volumetric rendering
is 64 × 64. For ABO [4], we use a 2D CNN to upscale
the coarse image to 128 × 128. For ShapeNet [2], we first
upsample it to 100x100 by bilinear interpolation, followed
by a 2D CNN to upscale it to 200x200.

Training We use the adversarial loss with a weight of 1
and L1 reconstruction loss with a weight of 100. We ob-
serve that different datasets demand different loss weights
for high perceptual quality. For example, on the ShapeNet-
chair dataset, we observe cracking patterns at convergence
as shown in Figure 1 when the weight of L1 loss is small
compared to the adversarial loss. In this case, we spe-
cially increase the L1 loss weight for ShapeNet-chair class

Figure 1. Trade-offs between reconstruction loss and adversary
loss. We show reference image in column (a) and results with
adversary loss with weight 1 and L1 loss with weights 0, 100,
and 5000 in column (b), (c), and (d) respectively. The adversary
loss favors sharp image features but tends to also introduce high-
frequency artifacts, while L1 loss favors smooth images.

to 5000, while the trainings on other datasets still remain
100. All the qualitative and quantitative results in the fol-
lowing are based on this setting.

2. Datasets

We present more details about the datasets we used.
Our experiments are conducted on two datasets, including
Amazon Berkeley Objects(ABO) [4] and three classes of
ShapeNet [2].

Amazon Berkeley Objects We use Amazon Berkeley
Objects which contains 7953 products with artist-designed
high quality 3D meshes. It covers 63 classes and features
great diversity of geometry and appearance. Most of the ob-

1



Figure 2. The example of color augmentation. The original object
is on the left and the result after color augmentation is on the right.

jects are furniture with wood or fabric textures. To enhance
appearance diversity, we augment each ABO object with
5 variants by transforming its base colors. For each vari-
ant, we apply a single random rotation in the RGB space
to all base colors. Figure 2 shows a picture frame and an
augmented variant. This augmentation increases the color
variance while preserving distance between original mate-
rial colors. There are 16161 training objects (including vari-
ants) and 200 test objects (without color augmentation).

ShapeNet-Plane, Car, Chair For the ShapeNet dataset,
we uses the car, plane and chair category similar to
Points2NeRF [10]. We do not apply color augmentation for
ShapeNet. And there are 3627, 1127, 4882 training objects
and 406, 128, 105 test objects for plane, car, chair respec-
tively.

Sample Point Cloud and Render Reference Images We
uniformly sample point cloud on the surface of each mesh
in our datasets. All points are sampled with material prop-
erties, including base color, roughness and metallic values.
We discarded meshes with additional textures such as trans-
parency textures. All these material properties are read from
principled BSDF loaded in Blender.

For reference images, which are used as the ground-
truth image in reconstruction losses and “real” data in GAN
losses, we render 10 RGB images with white backgrounds
from random viewpoints. We use the Blender Cycles ren-
derer and a fixed indoor environment map1 as lighting. For
ABO, the target resolution is 128× 128; and for ShapeNet,
the target resolution is 200 × 200 following Points2NeRF
[10].

Render Visible Points as Discriminator Condition To
ensure the appearance consistency between the rendered
image and input point cloud, the discriminator of our

1Asset from ambientCG.com, licensed under the Creative Com-
mons CC0 1.0 Universal License. https://ambientCG.com/a/
IndoorHDRI003

pipeline is conditioned on visible input points. Given an
image-based discriminator, we choose to represent the con-
dition by an image rasterized from the point cloud (denoted
by condition image). To be specific, we compute all visible
faces given a camera pose via rasterization, and preserve
the input points sampled from visible faces only. These vis-
ible points are projected onto the condition image, and the
RGB values at these pixel coordinates are fetched from the
reference images.

3. Baselines

3.1 NPBG

The original NPBG [1] optimizes point-wise neural descrip-
tors per scene, which is not applicable to our setting. Thus,
we adapt it to take non-learnable material properties instead
of learnable neural descriptors as inputs. We follow the im-
plementation of rasterization and rendering network in [7] 2.
Concretely, the input point cloud is rasterized to a pyra-
mid of 5 images of different spatial resolutions. The ren-
dering network is a 5-stage U-Net with gated convolutions.
The rasterization images are concatenated to corresponding
stages of the U-Net encoder. The model is supervised by
an L1-loss rather than the perceptual loss. Our preliminary
results show that the perceptual loss fails to encourage the
model to condition on input colors. We train the model on
each dataset for 20 epochs. We do not observe significant
improvement if the model is trained for more epochs (e.g.,
100).

3.2 Point-NeRF

We use the released code base3 of Point-NeRF [8]. Since
per-scene point growing and per-point feature fine-tuning
in Point-NeRF are not applicaple to our settings, we only
adopt their cross-scene training pipeline, and we use non-
learnable material properties as the per-point features. We
also replace their ball query and KNN module with our own
implementation, as we cannot find a way to effectively in-
crease the ball-query radius in the original code base. We
find that increasing the ball-query radius can significantly
improve image quality in Point-NeRF, probably due to the
sparsity of our point cloud. The only changes we make to
the original model are that we increase the number of shad-
ing points from 40 to 64, and we use a ball-query radius of
0.1 in the world space. In the training stage, we supervise
with color reconstruction loss only to match our settings.
We train Point-NeRF for 1M steps with a ray sample size
of 1024; further training does not significantly improve the
image quality on the training set.

2https://github.com/rakhimovv/npbgpp
3https://github.com/Xharlie/pointnerf

https://ambientCG.com/a/IndoorHDRI003
https://ambientCG.com/a/IndoorHDRI003
https://github.com/rakhimovv/npbgpp
https://github.com/Xharlie/pointnerf


3.3 Points2NeRF

We use the original code4 open-sourced by the authors. We
are not able to compare with it quantitatively as its training
fails to converge on the ABO dataset, and takes too long on
each class of ShapeNet, so we use their pretrained models
of each class released by the authors. Their pretrained mod-
els seem to use a non-standard and inconsistent coordinate
system that we could not align with our settings. For quali-
tative comparison, we use their pretrained models and man-
ually choose views that roughly align with ours, and do in-
ference on our test set using 1024 points as input. Note that
they use a different environment map, and thus their quali-
tative results are also not directly comparable. Even though
we use exactly the original code, original pretrained models
and original dataset, we still cannot reproduce the result on
the chair class of ShapeNet. For quantitative results, we di-
rectly report PSNR scores claimed in the original paper of
Points2NeRF [10].

3.4 Poisson Surface Reconstruction

For the classic approach Poisson Surface Reconstrucion [5],
we use the implementation of Open3D [9]. Since Poisson
Surface Reconstruction requires point cloud with normals,
we first use Open3D to estimate the normals and then per-
form the surface reconstruction. We have tried many possi-
ble depths of the octree used for the surface reconstruction,
but all results are not so satisfying due to the sparsity of
point cloud. We choose depth = 12 for the reconstruction,
copy material properties from the input points to the output
mesh vertices, and the reconstructed meshes are rendered
with same setting using Blender Cycles Renderer.

B. Additional Results

1. Comparison on more Datasets

In addition to ABO and ShapeNet airplane, we provide
quantitative comparison on 2 more ShapeNet classes, car
and chair in Table 1. We provide qualitative comparison of
more objects in Figure 4 and 5. We additionally provide
qualitative comparison of more than 100 objects for each
dataset at the end of the appendix.

2. Depth Results

Our pipeline is also capable of producing depth maps for
corresponding RGB images since it uses a 3D volumetric
representation. Although no direct supervision is applied to
the generated depth maps, the volumetric density inferred
through RGB supervision can be used to derive depth maps
from a weighted sum of shading point depths along each

4https://github.com/gmum/points2nerf

camera ray, as implemented in the original NeRF [6]. Fig-
ure 3 shows that our method generates consistent and clean
depth map on most datasets, except for ShapeNet-plane.
We speculate that the depth artifacts of ShapeNet-plane is
caused by the small occupancy of plane objects in 3D space,
as well as the similarity between the white color of planes
and the white background. Such similarity could result in
ambiguity that poses challenges for our model to tell apart
the foreground and background in certain regions, thus re-
sulting in floaters in the rendered depth map.

https://github.com/gmum/points2nerf


Figure 3. Depth rendering result on different datasets: (a) chair, (b) car, (c) plane, (d) ABO.

ABO Car Airplane Chair

Method PSNR↑ LPIPS↓ cPSNR↑ PSNR LPIPS cPSNR PSNR LPIPS cPSNR PSNR LPIPS cPSNR

NPBG [1] 16.7 0.173 13.3 16.3 0.157 8.51 25.6 0.0639 13.8 19.2 0.133 13
Point-NeRF [8] 20.5 0.214 15.2 16.6 0.181 9.33 25.6 0.0879 14.5 18.2 0.193 9.34

Points2NeRF∗ [10] - - - 20.86 - - 20.45 - - 17.17 -
Ours 22.3 0.110 17.0 19.9 0.0781 18.4 25.4 0.0442 14.4 20.9 0.0939 16.6

Table 1. Quantitative comparison. ∗PSNR values are copied from Points2NeRF paper.



Figure 4. Result on ShapeNet-Planes and ShapeNet-Carss.



Figure 5. Result on ABO and ShapeNet-Chairs. Points2NeRF fails on ShapeNet-Chairs even we used exactly the original code, original
pretrained models and origianl dataset the authors released, and fails to converge on ABO dataset.



Figure 6. Reference images on ABO dataset.

Figure 7. Our method results on ABO dataset.



Figure 8. NPBG results on ABO dataset.

Figure 9. Point-NeRF results on ABO dataset.



Figure 10. Reference images on ShapeNet-Plane.

Figure 11. Our method results on ShapeNet-Plane.



Figure 12. NPBG results on ShapeNet-Plane.

Figure 13. Point-NeRF results on ShapeNet-Plane.



Figure 14. Reference images on ShapeNet-Car.

Figure 15. Our method results on ShapeNet-Car.



Figure 16. NPBG results on ShapeNet-Car.

Figure 17. Point-NeRF results on ShapeNet-Car.



Figure 18. Reference images on ShapeNet-Chair.

Figure 19. Our method results on ShapeNet-Chair.



Figure 20. NPBG results on ShapeNet-Chair.

Figure 21. Point-NeRF results on ShapeNet-Chair.



References
[1] Kara-Ali Aliev, Artem Sevastopolsky, Maria Kolos, Dmitry

Ulyanov, and Victor Lempitsky. Neural point-based graph-
ics. June 2019. 2, 4

[2] Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat
Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese, Mano-
lis Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi,
and Fisher Yu. ShapeNet: An Information-Rich 3D Model
Repository. Technical Report arXiv:1512.03012 [cs.GR],
Stanford University — Princeton University — Toyota Tech-
nological Institute at Chicago, 2015. 1

[3] Anpei Chen, Zexiang Xu, Fuqiang Zhao, Xiaoshuai Zhang,
Fanbo Xiang, Jingyi Yu, and Hao Su. MVSNeRF: Fast
generalizable radiance field reconstruction from multi-view
stereo. In 2021 IEEE/CVF International Conference on
Computer Vision (ICCV). IEEE, oct 2021. 1

[4] Jasmine Collins, Shubham Goel, Kenan Deng, Achlesh-
war Luthra, Leon Xu, Erhan Gundogdu, Xi Zhang,
Tomas F Yago Vicente, Thomas Dideriksen, Himanshu
Arora, Matthieu Guillaumin, and Jitendra Malik. Abo:
Dataset and benchmarks for real-world 3d object understand-
ing. CVPR, 2022. 1

[5] Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe.
Poisson Surface Reconstruction. In Alla Sheffer and Kon-
rad Polthier, editors, Symposium on Geometry Processing.
The Eurographics Association, 2006. 3

[6] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. NeRF:
Representing scenes as neural radiance fields for view syn-
thesis. In Computer Vision – ECCV 2020, pages 405–421.
Springer International Publishing, 2020. 1, 3

[7] Ruslan Rakhimov, Andrei-Timotei Ardelean, Victor Lem-
pitsky, and Evgeny Burnaev. Npbg++: Accelerating neu-
ral point-based graphics. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 15969–15979, June 2022. 2

[8] Qiangeng Xu, Zexiang Xu, Julien Philip, Sai Bi, Zhixin
Shu, Kalyan Sunkavalli, and Ulrich Neumann. Point-NeRF:
Point-based neural radiance fields. In 2022 IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR). IEEE, jun 2022. 2, 4

[9] Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. Open3D: A
modern library for 3D data processing. arXiv:1801.09847,
2018. 3

[10] D. Zimny, T. Trzciński, and P. Spurek. Points2nerf: Gener-
ating neural radiance fields from 3d point cloud. June 2022.
2, 3, 4


	. Additional Experiment Details
	. Implementations
	. Datasets
	. Baselines
	NPBG
	Point-NeRF
	Points2NeRF
	Poisson Surface Reconstruction


	. Additional Results
	. Comparison on more Datasets
	. Depth Results


